
www.manaraa.com

Gossiping in Distributed Systems

Anne-Marie Kermarrec
INRIA, Rennes, France

Anne-Marie.Kermarrec@irisa.fr

Maarten van Steen
Vrije Universiteit Amsterdam, Netherlands

steen@cs.vu.nl

ABSTRACT
Gossip-based algorithms were first introduced for reliably dissem-
inating data in large-scale distributed systems. However, their sim-
plicity, robustness, and flexibility make them attractive for more
than just pure data dissemination alone. In particular, gossiping
has been applied to data aggregation, overlay maintenance, and re-
source allocation. Gossiping applications more or less fit the same
framework, with often subtle differences in algorithmic details de-
termining divergent emergent behavior. This divergence is often
difficult to understand, as formal models have yet to be developed
that can capture the full design space of gossiping solutions. In
this paper, we present a brief introduction to the field of gossip-
ing in distributed systems, by providing a simple framework and
using that framework to describe solutions for various application
domains.

1. THE GOSSIP REVIVAL
Gossiping in distributed systems refers to the repeated probabilis-
tic exchange of information between two members. Probabilis-
tic choice is a key element of gossiping, and in general refers to
the choice of member pairs that communicate. Repetition is also
crucial: in principle, gossiping is the endless process of randomly
choosing two members and subsequently letting these two exchange
information. The effect of gossiping is that information can spread
within a group just as it would in real life. In a sense, this is a
strongly related to epidemics, by which a disease is spread by in-
fecting members of a group, which in turn can infect others. In
distributed systems, epidemics refers to information dissemination
where a node randomly chooses another member, to which the in-
formation (i.e., the “disease”) can be communicated (unless both
had already been “contaminated”). Following common practice,
we shall not make a distinction between gossip and epidemics in
this paper.

The first use of gossip in distributed systems appeared some twenty
years ago in [5], where it was applied to ensure consistency in repli-
cated databases. Since then, it has been steadily applied to solve a
variety of problems, but has never received so much attention as in
the past few years. There is a good reason for this increased inter-

est. Just as in real life, gossiping is characterized by the fact that it
can spread quickly and be extremely persistent, notably also in sit-
uations in which groups change with respect to their memberships
and relations between group members.

In the last decade, we have seen a dramatic shift in the scale of
distributed systems: they have become larger, geographically more
dispersed, and often cross multiple administrative boundaries. This
shift in scale has forced us to revisit many of the assumptions un-
derlying distributed systems, and hence the solutions we have de-
veloped for them. More specifically, we need to deal with near-
continuous changes regarding the collection of nodes constituting
a distributed system, as well as the existence and quality of the con-
nections between those nodes. As a consequence, by being forced
to pay attention to a system’s behavior under continuous change,
we have been forced to focus more on convergent behavior. Gos-
siping solutions are often indifferent to changes in the group of
communicating nodes, while at the same time exhibit strong con-
vergent behavior. Moreover, many solutions are designed to let
nodes take local-only decisions. As such, they are attractive for
developing large-scale distributed systems.

In this light, we present a brief overview of gossiping in modern
distributed systems. We aim to accomplish two goals. First, we
want to provide a framework that is easy and general enough to un-
derstand and compare gossiping solutions. Furthermore, although
gossiping has been traditionally used for reliable information dis-
semination, its applicability goes way beyond in distributed sys-
tems. Our second goal is to provide an overview of traditional
gossip-based dissemination, but also to have a look at other applica-
tions such as those for data aggregation and systems management.

The rest of this paper is organized as follows. We start by pro-
viding a framework for gossiping protocols in Section 2. Section 3
provides the main results of probabilistic gossip-based data dissem-
ination; in Sections 4 and 5 we show that the same set of algorithms
may be applied to build and maintain overlay networks from fully
unstructured (random-based) to fully structured. In Section 7, we
also show that the same techniques can be used to compute ag-
gregates in a fully decentralized way and in Section 6 to slice the
networks according to a given attribute metric. We conclude in Sec-
tion 8 by stating that we believe that such approaches can be used in
many other contexts which are either out of the scope of this paper
(such as application to ad-hoc networks) or yet to be discovered.

2

www.manaraa.com

Active thread (peer P): Passive thread (peer Q):

(1) selectPeer(&Q);
(2) selectToSend(&bufs);
(3) sendTo(Q, bufs);
(4)
(5) receiveFrom(Q, &bufr);
(6) selectToKeep(cache, bufr);
(7) processData(cache);

----->

<-----

(1)
(2)
(3) receiveFromAny(&P, &bufr);
(4) selectToSend(&bufs);
(5) sendTo(P, bufs);
(6) selectToKeep(cache, bufr);
(7) processData(cache)

Figure 1: The general organization of a gossiping protocol.

2. GOSSIPING FRAMEWORK
As with so many concepts in computer science, providing a precise
characterization of gossiping solutions is difficult. The common
model underlying gossip-based solutions is that of a (possibly dy-
namically changing) set of processes, called peers, each of which
regularly exchanges information with other peers. This informa-
tion exchange can be modeled by means of two separate threads:
an active thread which takes the initiative to communication, and
a passive thread accepting incoming exchange requests. Note that
each peer consists of these two threads.

Figure 1 shows the general organization of a gossiping protocol.
We consider two peers, P and Q, of which P has just selected Q to
exchange information with. Each peer is equipped with a cache,
consisting of references to other peers in the system. A cache is
also capable of storing (peer specific) information. Peer P first se-
lects a target peer (in our example Q) to setup communication. It
then decides on what data that it will send to Q, and stores this in a
send buffer. The information is then sent to Q, which, in turn, se-
lects information to return to P. After the exchange has completed,
both decide separately which exchanged information will actually
be stored in the cache. In case the cache is limited in size, this may
imply that cache entries will need to be replaced.

The crucial aspects of this framework are the following:

Peer selection: A peer such as P needs to select another peer (Q in
our example) to exchange information with. Gossiping pro-
tocols differ in their selection process of Q. For example, in
many systems it is assumed that Q can be chosen uniformly
from the complete set of currently available peers. Of course,
this is generally not a realistic assumption and special mea-
sures need to be taken to approximate its validity. In this
respect, we point to the peer sampling service [12] which
is a distributed implementation allowing a peer to uniformly
randomly select another available peer.
In wireless systems, the situation becomes completely differ-
ent. In this case, it is often necessary to choose a peer only
from those nodes that are in range of the peer initiating a gos-
sip. Of course, it is also possible to mimic the behavior of
wire-line systems (see, e.g., [1]), but this may be costly, and
even unnecessary. For example, consider the gossiping pro-
tocol for wireless environments as described in [11]. Here,
a node P selects one of its neighbors, say Q, to exchange
data with. P and Q are in each other’s range, and execute
a synchronous protocol. That is, P will send data to Q, and
expects data to be returned from Q. As it turns out, this syn-
chronous behavior can be more or less mimicked using an
asynchronous local broadcast protocol as deployed in wire-
less sensor networks. In that case, P simply sends data to all

its neighbors, of which one will keep it (with high probabil-
ity). Likewise, later one of P’s neighbors will issue a broad-
cast, and P may be the one to accept it for further process-
ing. At application level, there is hardly any difference be-
tween the synchronous and the asynchronous data exchange.
Note however, that although the effect of both protocols is the
same, one could question whether the asynchronous version
can actually be qualified as gossiping. As such, it illustrates
that drawing a hard line around gossiping protocols may not
be that easy.

Data exchanged: As explained earlier, both peers decide on which
data they exchange with each other. This exchange is highly
application-dependent and we will see many differences de-
pending on application domains. One interesting example of
data exchange is the one used for implementing the above
mentioned peer sampling service. Instead of exchanging ap-
plication data, peers may also decide to exchange references
to other peers as stored in their local cache. Gossiping in
that case leads to a situation in which the network topology,
as induced by the references that peers hold to each other,
changes at each gossip exchange.

Data processing: This part of the framework describes how a peer
deals with the received information. Again, data processing
is highly application dependent. An interesting case is when
references are exchanged, which are then subsequently used
by the application to build lists of nearby nodes, where the
notion of proximity may vary. For example, we shall see that
this approach allows to build distributed data structures, but
that it can also be used to cluster nodes according to mutual
interests.

In the following we will have a look at various application domains
where gossiping can be successfully applied.

3. DISSEMINATION
Traditionally, gossip-based solutions have been used for dissemina-
tion purposes. A standard approach toward dissemination is to sim-
ply let peers forward messages to each other. As explained in [9],
this dissemination process is roughly steered by three parameters:
every process can store up to c messages in its local cache, a mes-
sage is forwarded up to t times, and each time a peer selects f other
peers to forward the message to. A crucial element in this pro-
cess is the selection of the f peers, and much work on gossip-based
dissemination concentrates on how peers can be selected such that
they represent a uniformly drawn sample from the entire set of cur-
rent members. We will return to this problem below.

When focusing only on the data dissemination part, the basic ap-
proach can be characterized as follows:

3

www.manaraa.com

• Peer selection: each peer P periodically chooses f ≥ 1 peers
Q1, . . . ,Q f uniformly at random from the entire set of cur-
rently available (i.e., alive) peers.

• Data exchanged: a message is selected from the local cache
and copied from one peer to another. In a push model, P
forwards a message to each Qi; in a pull model, each Qi sends
a message to P. A combination of the two is also possible.

• Data processing: effectively, nothing special is done except
storing the received message for a next iteration, or passing
it to a higher (application) layer.

The essence of this approach is described in the seminal paper by
Demers et al. [5]. In this case, dissemination of several data el-
ements takes place at the same time by letting randomly chosen
pairs of nodes exchange new information. At the end of the ex-
change, the two nodes forming a pair should each have the same
information (effectively reducing the entropy of the entire system).

An important observation of gossip-based dissemination is that the
data gets spread exponentially fast through the network. In general,
it takes O(logN) rounds to reach all nodes, where N is the number
of nodes. A round completes when every peer has initiated a gossip
exactly once. More specifically, if a peer repeatedly gossips to f
other peers chosen uniformly at random among all other peers, the
proportion ρ of nodes that will eventually get the message satisfies
the equation ρ = 1− exp(ρ f) and is actually independent of the
system size.

Now, consider the probability that not one specific peer should get
the message, but that all peers should get it. In a later work [21],
it has been shown that the probability of achieving such an atomic
reliable broadcast can be related to the system size, the number of
link and peer failures and the number of gossip targets. In a sys-
tem where each peer, receiving for the first time a given message,
gossips it to f = log(N)+ γ other peers chosen uniformly at ran-
dom, N being the size of the system and γ a parameter of the sys-
tem, the probability that eventually all peers receive the message is
exp(−exp(−γ)). This guarantee holds if the fanout f (number of
gossip targets) is on average O(log(N)) regardless of the distribu-
tion.

Although using only gossiping for data dissemination is perfectly
feasible, it has the drawback of potentially introducing much redun-
dancy. This is certainly the case with multicasting, when a message
is intended to be delivered only to a specific subset of all peers. An
interesting combination of multicasting and gossiping was intro-
duced by Birman et al. [2] to achieve probabilistic reliable mul-
ticasting. Assuming that unreliable multicasting has already been
taken care of, for example, through IP multicasting, reliability can
be achieved by having nodes gossip information about missed mes-
sages. The important improvement is that only meta information is
gossiped, and not the multicast messages themselves.

An approach along the same lines is followed in the CREW sys-
tem [6]. In this case, the information to be disseminated is parti-
tioned into chunks, and only the list of chunks is initially broadcast
to all peers. Each node then attempts to get all the chunks by pulling
in the missing ones from randomly selected peers. In this way, we
at least avoid that chunks are sent out to nodes that already have
them.

However, the problem remains that inherent flooding nature of the

approach imposes that notably those nodes having a high indegree
are at risk of receiving the same message over and over again. With
random selection of peers, it can be shown that such nodes will
indeed exist. There are several approaches to tackle this problem,
but the basic idea is always to reduce the variance in the indegree
distribution. As a consequence, the construction of the overlay be-
comes an important issue. We will return to this matter below. It
is worth mentioning that Patel et al. [24] propose to borrow a solu-
tion from the theory of social networking by having a node A give
higher preference to neighbors that (1) also refer to A, or (2) for
which A can act as a bridge between two otherwise disconnected
nodes. Property (1) is the equivalent of social reciprocity, while
(2) is also known as filling a structural hole. The net effect is that
dissemination improves while the number of redundant messages
drops.

The main results regarding gossip-based dissemination that we want
to emphasize here are that solutions are (1) simple: they rely on a
simple exchange of message between peers, (2) scalable: the num-
ber of times a peer needs to gossip or the number of targets a peer
needs to gossip to are logarithmic in the size of the system, and
(3) provide some probabilistic guarantees of message delivery. To
this end, they rely on randomization and a proactive approach to
recovery by ensuring a priori a high degree of redundancy. These
protocols are therefore extremely resilient to a large number of fail-
ures in the system and cope well with the high level of dynamism
of large-scale distributed systems. At the same time, redundancy
may impose a problem that requires additional solutions.

4. PEER SAMPLING
Virtually all gossip algorithms rely on the fact that a node can uni-
formly at random select a peer from the current set of nodes. Ob-
viously, scalability demands that we employ decentralized mem-
bership protocols for gossip-based algorithms. Although alterna-
tive protocols have been proposed to create a neighbor set for each
node [1, 10, 23], it turns out that gossiping itself can be used to
provide randomly selected peers in a highly efficient and effective
way.

Again, the same substrate is used except that instead of exchang-
ing a message to be broadcast, membership information (i.e., a list
of peers) is gossiped. The first protocol which introduced such a
gossip-based membership algorithm is Lpbcast [8] and combined it
with the actual dissemination algorithm. Newscast was then intro-
duced in [13] and provided a gossip-based algorithm alone, achiev-
ing strong connectivity properties. Along these lines, Cyclon was
proposed [30], resulting in topologies close to those of regular di-
rected random graphs.

In [14], a common framework has been defined fitting those ap-
proaches in order to study the impact of the protocol parameters
on the resulting graphs of connections. An interesting conclusion
from this work was that a large number of gossip-based member-
ship protocols can be used to provide each node with a local cache,
such that randomly selecting a peer from a local cache is very close
to randomly selecting a peer from the entire network. We can thus
build a scalable peer sampling service using gossiping. In this case,
the characteristics of an implementation are as follows:

• Peer selection: each peer P chooses periodically a gossip
target Q from its current set of neighbors.

• Data exchanged: the data exchanged between peers is are
simply lists of peers.

4

www.manaraa.com

• Data processing: upon receipt of the list, the receiving peer
merges the list of peers received with its own list to compose
a new list of neighbors. Some peers may need to be dropped
from the new list due to size limitations.

It turns out that some parameters have a significant impact on the
resulting overlay. For example, it may be decided to guarantee that
a number of exchanged peers are kept in the new neighbor lists
of both gossiping peers. This so-called shuffle parameter speci-
fies the diversity of the local caches and limits the loss of infor-
mation over gossip. Likewise, the strategy to drop old references
to peers (when deciding on which references to keep in the pro-
cedure selectToKeep in Figure 1) may have a large impact with
respect to how quickly failed nodes are forgotten. It is interesting
to note that although different implementations show similar func-
tional behavior (i.e., they can all provide randomly selected peers),
their overall convergent behavior in terms of connectivity, conver-
gence speed, and even vulnerability to attacks [18], differs widely.
The peer sampling service is now considered a building block for
many other applications.

Peer sampling in many cases assumes the underlying network has a
high degree of homogeneity, in the sense that the cost for contacting
a node and exchanging information is almost the same for each
node. Of course, this is not true and ignoring heterogeneity may
adversely affect performance, or even the intended behavior of the
protocol.

One of the first papers in which heterogeneity was taken into ac-
count concerned directional gossiping [22]. An important observa-
tion is that in many networks neighbors may be reachable through
multiple paths. As a consequence, well-reachable neighbors have a
higher chance of receiving a message than neighbors with only one
or a few paths. Consequently, it is more efficient to give a higher
probability to selecting peers that are less reachable for the node
that is initiating a gossip exchange.

Equally important is that when gossiping between nodes of which
some are operating behind firewalls, we need to take into account
that links become asymmetric. In other words, although a node
behind a firewall can initiate a gossip exchange, it will generally be
impossible to select such a node for a data exchange. This situation
has been studied by Drost et al. [7]. The problem with many gossip
implementations is that a nonreachable node is considered to be
faulty, which need not be the case with firewalled nodes. Instead of
dropping a reference when a connection setup fails, another node
is selected from a fallback cache, which consists only of references
to peers to which a connection has once succeeded. The effect is
that nodes behind firewalls are continued to be seen by other peers,
and can thus be selected by applications.

5. TOPOLOGY CONSTRUCTION
For practical reasons, each node in a gossip-based system maintains
only a partial view of the complete set of nodes currently in a sys-
tem. This partial view is stored as a local cache and is maintained
by exchanging entries from caches of neighboring nodes. The re-
sult is an overlay network in which a directed link from A to B
exists only if A has a reference to B in its local cache. To guarantee
that the selection of a peer (through the operation selectPeer in
Figure 1) follows a uniform distribution, implementations of a peer
sampling service show that induced overlays strongly resemble tra-
ditional random graphs [3].

However, as we also mentioned, we sometimes need to exert a
stronger control when constructing overlays. Again, gossiping turns
out to be an excellent vehicle to do so. By introducing a proximity
metric, which may be application specific, it turns out that many
different overlay topologies can be constructed.

Jelasity et al. [15] propose to use a ranking function that reflects
a preference for keeping certain references in the local cache. For
example, if we assume that every node has a unique numerical iden-
tifier i ∈ {0, . . . ,N −1}, a simple ranking is to let a peer with ID j
keep only a reference to the peer with the largest IDs i < j, and
one to the peer with the smallest IDs k > j (with modulo N arith-
metic). In effect, we are creating a bidirectional ring. Other (and
more robust) schemes can easily be envisaged.

Note that in order to preferentially select peers, it is essential that
a node is continuously offered peers from the whole network. For
this reason, gossip-based topology construction may be layered on
top of a peer sampling service that returns uniformly and randomly
selected peers. Feeding the topology construction algorithm en-
ables a node to keep on discovering relevant peers.

This brings us to the following classification:

• Peer selection: the set of peers is ranked according to a given
ranking function and the gossip target is chosen at random
among the first half of peers from the local cache.

• Data exchanged: the data exchanged between peers are lists
of peers.

• Data processing: upon receipt of the message, the receiving
peer merges the received list with its own, ranks the elements
according to the given ranking function, and keeps the first
elements (up to the size required).

Structured overlays can be constructed by using geometry-based
proximity metrics applied to the identifier space for nodes. Clearly,
these metrics are application independent. Along the same lines,
one can focus on node-specific properties, such as availability. Sacha
et al. [25] propose to assign a utility to each node and to then subse-
quently let nodes with similar utility keep references to each other.
The effect is a gradient network [27], which is characterized by the
fact that directed paths tend to end in the node with the highest util-
ity. Again, note that also these networks require to be “fed” by an
underlying peer sampling service.

The same approach may be applied to cluster peers according to
application-specific metrics, such as semantic similarity. Such sim-
ilarity can, for example, be represented by the fraction of files that
two peers have in common, expressing that the two peers have sim-
ilar taste (see, e.g., [31]). Such clustering can help in speeding
up search queries, or passing notifications as in publish-subscribe
systems. The main difference with many application-independent
metrics is that it may be impossible to maintain connectivity of the
overlay as peers may have strong mutual preferences, leading to
“islands” of peers. In addition to feeding the topology construction
algorithm, the underlying peer sampling service also prevents the
network from becoming disconnected.

6. RESOURCE MANAGEMENT
Topology construction can be viewed as a special case of systemwide
resource management. More specifically, gossiping has also been

5

www.manaraa.com

used to monitor the state of nodes and resources in large-scale dis-
tributed systems. The most common monitoring service has always
been failure detection [29,32], but it has also been shown useful for
monitoring other aspects of resources [26]. The most important as-
pect in gossip-based monitoring is that nodes build up a consistent
view on specific nodes. The applications can be characterized as
follows:

• Peer selection: each peer P chooses periodically a gossip
target Q from its current set of neighbors.

• Data exchanged: the data exchanged between peers is status
information on other peers (e.g., last reported alive message).

• Data processing: upon receipt of the message, the receiv-
ing peer merges the received information with its own status
information on nodes, effectively updating its view of other
nodes.

From this classification, one can view resource monitoring as a spe-
cific form of data dissemination. An interesting case is failure de-
tection, which can be either explicit or implicit. In the explicit ap-
proach [26, 29], nodes send heartbeat messages to each other from
which they draw conclusions regarding failures. In an implicit ap-
proach, whenever a peer cannot be contacted after its selection from
the local cache (through the selectPeer() function), a node will
drop that peer from its local cache. The net effect is that eventually
references to failed nodes will have been completely removed from
the system. The speed by which this removal converges depends
strongly on the actual gossiping strategy [14].

Strongly related to resource monitoring is aggregation of resource
information, which has been studied extensively for systems such
as Astrolabe [28] and GEMS [26]. We return to aggregation in the
next section.

Besides monitoring, gossiping can also be used for resource allo-
cation. The underlying idea is that several applications should be
able to be executed simultaneously on a given collection of nodes.
The main problem that needs to be addressed is allocating nodes
to applications. When dealing with very large collections of nodes,
taking a traditional centralized approach may turn the allocation
component into a serious bottleneck. It has been shown that gos-
siping can provide a fully decentralized solution to this problem.

For example, a gossip-based approach to estimate to which slice of
a collection a node belongs has been proposed in [16] (built on top
of the peer sampling service for the reasons invoked earlier). Each
node is expected to hold a specific value related to a given attribute
(bandwidth, storage, uptime, etc.) along with an associated random
ID ∈ [0,1]. The basic idea is to sort the nodes according to both
the random ID and the attribute value. The gossip-based protocol
is used to have peers swapping their random ID until the order of
IDs reflects the order of the attribute value. Assuming that IDs are
actually distributed uniformly, eventually a peer holding a random
ID larger than 0.9 knows that it belongs to the top 10% of the peers.

In case an absolute number is required (i.e., an application requires
N nodes to be allocated), the relative positioning of a node can be
combined with an estimate of the network size using, for example,
the gossip-based aggregation techniques we discuss below. In that
case, a node can determine its absolute ranking position and decide
whether it should be allocated to the application or not.

7. COMPUTATIONS
As we mentioned, resource management is closely related to aggre-
gation. Gossiping has also found its way in the area of aggregate
computations in very large distributed systems. Such systems are
generally characterized by the fact that (1) centralized components
cannot be deployed, (2) the set of members changes almost con-
tinuously, and (3) the communication topology that ties the nodes
together may not be globally known. In addition, when dealing
with wireless systems (such as sensornets), computational power
may be limited. Gossiping has shown to be an efficient tool for
computing aggregates, such as sums, averages, and maximum and
minimum values. It is also an appropriate tool when one is not in-
terested in the results of a single node, but when aggregate data (in
a part) of the network is what matter.

The main difference with the gossiping solutions we have discussed
so far, is that the data processing is now a crucial element to con-
sider. This brings us to the following characterization:

• Peer selection: each node periodically chooses one other
peer uniformly at random from the entire set of currently
available (i.e., alive) peers.

• Data exchanged: an application-specific data element is copied
from one peer to another.

• Data processing: a new data value is computed from ex-
changed information, and which will then be used in a next
gossip exchange.

As an example, consider the computation of an average value. Each
node i stores a single numeric value vi and initializes the average
value with its initial value. Upon gossip a peer i and j exchange
their local value vi and v j and adjust it to

vi,v j ← (vi + v j)/2

Such operations guarantee the conservation of the weight (i.e., ∑vk
remains the same) while bringing each value vi closer to the aver-
age. It can be shown that the variance decreases exponentially.

Several groups have devised gossip-based solutions for aggregate
information, with first results published by Kempe et al. [20] and
Jelasity et al. [17]. Dynamically configuring aggregation functions
has been explored in the aforementioned Astrolabe system [28].
Recent publications have concentrated on optimizing algorithms
for improving convergence speed and number of messages to ex-
change (see, e.g., [4, 19]). Again, in most cases it is assumed that
peers can uniformly at random select another live peer from the
entire network.

8. DISCUSSION
The purpose of this paper was to demonstrate that using a simple
generic substrate of gossip, arbitrary functions might be ensured
by just changing the way gossip targets are chosen and the content
and processing of the information exchanged. Gossip-based algo-
rithms are now at the point that they represent a mature technology
that has been identified as a powerful tool to build and maintain
distributed systems. Introduced for very specific reliable dissemi-
nation purposes, it turns out that the key to scalability in distributed
computing is to keep disseminating information around. Yet many
challenges remain in this area, many of which are discussed in ac-
companying papers in this special issue and for which reason we
shall not address them here.

6

www.manaraa.com

9. REFERENCES
[1] Z. Bar-Yossef, R. Friedman, and G. Kliot. “RaWMS -

Random Walk based Lightweight Membership Service for
Wireless Ad Hoc Networks.” In Proc. Seventh Int’l Symp.
Mobile Ad Hoc Networking and Computing, pp. 238 – 249,
May 2006. ACM Press, New York, NY.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. “Bimodal Multicast.” ACM Trans. Comp. Syst.,
17(2):41–88, May 1999.

[3] B. Bollobas. Random Graphs. Cambridge University Press,
Cambridge, UK, 2nd edition, 2001.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
“Randomized Gossip Algorithms.” IEEE Transactions on
Information Theory, 52(6):2508–2530, June 2006.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
“Epidemic Algorithms for Replicated Database
Maintenance.” In Proc. Sixth Symp. on Principles of
Distributed Computing, pp. 1–12, Aug. 1987. ACM.

[6] M. Deshpande, B. Xing, I. Lazaridis, B. Hore,
N. Venkatasubramanian, and S. Mehrotra. “CREW: A
Gossip-based Flash-Dissemination System.” In Proc. 26th
Int’l Conf. on Distributed Computing Systems, July 2006.
IEEE Computer Society Press, Los Alamitos, CA.

[7] N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal.
“ARRG: Real-World Gossiping.” In Proc. 16th Int’l Sympȯn
High Performance Distributed Computing, July 2007. IEEE
Computer Society Press, Los Alamitos, CA.

[8] P. Eugster, R. Guerraoui, S. Handurukande, A.-M.
Kermarrec, and P. Kouznetsov. “Lightweight Probabilistic
Broadcast.” ACM Trans. Comp. Syst., 21(4):341–374, Dec.
2003.

[9] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulié. “Epidemic Information Dissemination in
Distributed Systems.” IEEE Computer, 37(5):60–67, May
2004.

[10] A. Ganesh, A.-M. Kermarrec, and L. Massoulié.
“Peer-to-Peer Membership Management for Gossip-based
Protocols.” IEEE Trans. Comp., 52(2):139–149, Feb. 2003.

[11] D. Gavidia, S. Voulgaris, and M. van Steen. “A Gossip-based
Distributed News Service for Wireless Mesh Networks.” In
Proc. Third Int’l Conf. Wireless On-demand Network
Systems & Services (WONS), Jan. 2006. IEEE Computer
Society Press, Los Alamitos, CA.

[12] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. “The Peer Sampling Service: Experimental
Evaluation of Unstructured Gossip-Based Implementations.”
In Proc. Middleware 2004, volume 3231 of Lect. Notes
Comp. Sc., pp. 79–98, Oct. 2004. Springer-Verlag, Berlin.

[13] M. Jelasity, W. Kowalczyk, and M. van Steen. “Newscast
Computing.” Technical Report IR-CS-006, Vrije Universiteit
Amsterdam, Department of Computer Science, 2003.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen. “Gossip-based Peer Sampling.” ACM
Trans. Comp. Syst., 25(3), Aug. 2007.

[15] M. Jelasity and O. Babaoglu. “T-Man: Gossip-based Overlay
Topology Management.” In Proc. Third Int’l Workshop Eng.
Self-Organising App., volume 3910 of Lect. Notes Comp.
Sc., pp. 1–15, June 2006. Springer-Verlag, Berlin.

[16] M. Jelasity and A.-M. Kermarrec. “Ordered Slicing of Very
Large-Scale Overlay Networks.” In Proc. Sixth Int’l Conf.
Peer-to-Peer Comput., pp. 117–124, Sept. 2006. IEEE
Computer Society Press, Los Alamitos, CA.

[17] M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-based
Aggregation in Large Dynamic Networks.” ACM Trans.
Comp. Syst., 23(3):219–252, Aug. 2005.

[18] G.-P. Jesi, D. Gavidia, C. Gamage, and M. van Steen. “A
Secure Peer Sampling Service.” In Proc. Fourth Int’l Conf.
Autonomic Comput., 2007.

[19] S. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi, and
A. Srinivasan. “Efficient gossip-based aggregate
computation.” In Proc. 25th Symp. on Principles of Database
Systems, pp. 308–317, 2006. ACM Press, New York, NY.

[20] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-Based
Computation of Aggregate Information.” In Proc. 44th Symp.
Foundations Computer Science, pp. 482–491, Oct. 2003.
IEEE Computer Society Press, Los Alamitos, CA.

[21] A.-M. Kermarrec, L. Massoulié, and A. Ganesh.
“Probabilistic Reliable Dissemination in Large-Scale
Systems.” IEEE Trans. Par. Distr. Syst., 14(3):248–258, Mar.
2003.

[22] M.-J. Lin and K. Marzullo. “Directional Gossip: Gossip in a
Wide-Area Network.” In Proc. Third European Dependable
Computing Conf., volume 1667 of Lect. Notes Comp. Sc., pp.
364–379. Springer-Verlag, Berlin, Sept. 1999.

[23] R. Melamed and I. Keidar. “Araneola: A Scalable Reliable
Multicast System for Dynamic Environments.” In Proc.
Third Int’l Symp. Network Computing and Applications, pp.
5–14, 2004. IEEE Computer Society Press, Los Alamitos,
CA.

[24] J. Patel, I. Gupta, and N. Contractorn. “JetStream: Achieving
Predictable Gossip Dissemination by Leveraging Social
Network Principles.” In Proc. Fifth Int’l Symp. Network
Computing and Applications, pp. 32–39, July 2006. IEEE
Computer Society Press, Los Alamitos, CA.

[25] J. Sacha, J. Dowling, R. Cunningham, and R. Meier.
“Discovery of Stable Peers in a Self-Organising Peer-to-Peer
Gradient Topology.” In Proc. Sixth Int’l Conf. Distributed
Applications and Interoperable Systems, volume 4025 of
Lect. Notes Comp. Sc., pp. 70–83, June 2006.
Springer-Verlag, Berlin.

[26] R. Subramaniyan, P. Raman, A. D. George, and
M. Radlinski. “GEMS: Gossip-Enabled Monitoring Service
for Scalable Heterogeneous Distributed Systems.” Cluster
Comput., 9(1):101–120, 2006.

[27] Z. Toroczkai and K. Bassler. “Network dynamics: Jamming
is limited in scale-free systems.” Nature, 428:716, Apr. 2004.

[28] R. van Renesse, K. Birman, and W. Vogels. “Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining.” ACM Trans.
Comp. Syst., 21(2):164–206, May 2003.

[29] R. van Renesse, Y. Minsky, and M. Hayden. “A Gossip-Style
Failure Detection Service.” In Proc. Middleware ’98, pp.
55–70, Sept. 1998. IFIP.

[30] S. Voulgaris, D. Gavidia, and M. van Steen. “CYCLON:
Inexpensive Membership Management for Unstructured P2P
Overlays.” J. Netw. & Syst. Mgt., 13(2):197–217, June 2005.

[31] S. Voulgaris and M. van Steen. “Epidemic-style Management
of Semantic Overlays for Content-Based Searching.” In
Proc. 11th Int’l Conf. Parallel and Distributed Computing
(Euro-Par), volume 3648 of Lect. Notes Comp. Sc., pp.
1143–1152, Sept. 2005. Springer-Verlag, Berlin.

[32] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz. “On
Failure Detection Algorithms in Overlay Networks.” In Proc.
24th INFOCOM Conf., Mar. 2005. IEEE Computer Society
Press, Los Alamitos, CA.

7

